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1. Introduction

The highest dimension in which one can have a superconformally invariant theory is

d = 6 [2] and the maximally supersymmetric theory in d = 6 has N = (2, 0) chiral

supersymmetry. The more symmetries we require on our theory, the better its quantum

behaviour. One might hope that these maximally supersymmetic theories in six dimensions

will enjoy the same finiteness property as their close relatives in four dimensions, N = 4

super Yang-Mills. Due to the difficulties with quantizing gravity, it has even been suggested

that the (2, 0) theory might be ‘the theory of everything’ [7]. According to that picture our

universe would be a curved1 three brane embedded in flat six dimensions. Indeed the (2, 0)

supersymmetry algebra allows for a central extension that involves a three brane (as well as

a selfdual string) [8]. Although this is just a speculation, it calls for a further investigation

of the (2, 0) theories.

But it is problematic to quantize (2, 0) theory. The coupling constant is a fixed number

∼ 1 due to self-duality and the dyonic charge quantization condition for strings in six

dimensions. It may therefore not be possible to go from a classical theory to a quantum

perturbation theory. It is possibly that (2, 0) theory only exists as a quantum theory, with

no classical limit. But one way to obtain a related quantum theory would be if one could

find solitonic solutions to some classical equations of motion. One should then be able

to find a quantum theory by expanding quantum fields about this classical solution in a

parameter which is related to the inverse tension of the extended object.

In this Letter we will indeed derive the classical equations of motion, though in loop

space. We will introduce a non-abelian tensor multiplet in loop space, and show that

it closes the supersymmetry algebra on-shell and as a by product get the non-abelian

equations of motion of the loop fields in the tensor multiplet.

1In that way we get an induced gravity.
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It thus appears to be the unique way in which to generalize the abelian tensor multiplet.

But whether our results will find any practical use is unclear. We do not know how to handle

equations in loop space, and we do not think that it is obvious how to descend from loop

fields to local fields. We will mention a few difficulties that we encountered when we tried

this, in the last section.

2. The tensor multiplet and its constraints in loop space

We will assume flat d = 1 + 5 dimensional Minkowski space-time M with metric ten-

sor ηµν =diag(−1, 1, 1, 1, 1, 1) and Lorentz symmetry group SO(1, 5). The (2, 0)-super-

symmetry is generated by 16 real supercharges transforming in the chiral representation

(4, 4) of SO(1, 5) × SO(5), where SO(5) is an internal R-symmetry group. Our spinor con-

ventions are the same as in [3], and these are collected in appendix. Requiring all this

supersymmetry and no dynamical gravity, there is just one abelian multiplet, namely the

tensor multiplet. It consists of a two-form gauge potential Bµν(x) with anti self-dual field

strength Hµνρ(x) = −1
6εµνρκτσHκτσ(x), five Lorentz scalars φA(x) (where A is a vector

index of SO(5)), and four real chiral (i.e. symplectic Majorana-Weyl) spinors ψ(x) which

transform in the same (4, 4)-representation as the supercharges.

An abelian two-form gauge potential Bµν(x) in M can alternatively be viewed in a

parametrized loop space as a one-form,

Aµ(C) :=

∫

dsĊν(s)Bνµ(C(s)). (2.1)

Here C denotes a parametrized loop s 7→ Cµ(s) in M and s will always run over some fixed

interval, say s ∈ [0, 2π]. In [6] we also introduced abelian loop fields corresponding to the

other fields in the abelian tensor multiplet,

φA
µ (C) :=

∫

dsĊµ(s)φA(C(s))

ψµ(C) :=

∫

dsĊµ(s)ψ(C(s)). (2.2)

In the non-abelian case we suggested in [6] the following representation for the loop fields

AA
µ (C) =

∫

dsAa
µ(s,C)λa(s) (2.3)

and similarly for the other fields in the tensor multiplet, where λa(s) denote generators of

the loop algebra associated with the gauge group with structure constants Cab
c, that is,

[λa(s), λb(t)] = Cab
cδ(s − t)λc(s). (2.4)

It should be noticed that we are not giving a very concrete representation here of the loop

fields. Apriori Aµ(s,C) may depend in any non-local way on the loop C. There also exists

a more concrete way to represent loop fields in terms of a local connection one-form and

two-form (see for instance [4]). We have therefore aimed to keep our discussion completely

general in this and the next sections by not specifying a representatation of the loop fields.
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We begin with the abelian case, and then look for a natural non-abelian generalization.

We introduce a derivative in loop space,

∂µ(C) :=

∫

ds
δ

δCµ(s)
(2.5)

and a gauge covariant derivative

Dµ(C) := ∂µ(C) + Aµ(C) (2.6)

though in the sequel we will drop the arguments C where it should always be obvious from

the context whether ∂µ denotes a derivative in loop space or in space-time. The gauge

covariant field strength is Fµν = [Dµ,Dν ]. The gauge transformations act as (considering

infinitesimal transformations generated by the loop field Λ(C)),

δAµ = DµΛ

δFµν = [Fµν ,Λ]

δφA
µ = [φA

µ ,Λ]

δψµ = [ψµ,Λ] (2.7)

We are now ready to write down the constraints on the abelian loop fields. They are

∂µφA
µ = 0

∂µψµ = 0 (2.8)

which is easily seen by computing

∂ν(C)φA
µ (C) =

∫

dsĊµ(s)∂νφA(C(s)) − ηµν

∫

dsĊκ(s)∂κφA(C(s)). (2.9)

We then see that ∂µφA
µ corresponds to a total derivative which vanishes when integrated

over the loop.

How should these constraints be generalized to the non-abelian case?2 The natural

generalization is of course to take the following gauge covariant non-abelian constraints,

DµφA
µ = 0

Dµψµ = 0 (2.10)

But now it is not consistent with supersymmetry to impose these constraints alone, without

also imposing the constraint

[φA
µ , ψν ] = [φA

ν , ψµ] (2.11)

To see this, we impose the following supersymmetry variations of the Bose loop fields,

δφA
µ = −iε̄ΓAψµ

2Using the representation (2.1) it is easy to see that the above constraints can not persist to the non-

abelian case. The loop derivative will hit (in a subtle way) on the generators λa(s) as well.

– 3 –



J
H
E
P
0
1
(
2
0
0
6
)
1
6
5

δAµ = −iε̄Γκµψκ (2.12)

and find that the supersymmetry variation of constraint becomes

ΓADµψµ + Γνµ[ψν , φ
A
µ ] = 0. (2.13)

Hence we see that supersymmetry implies that we must also impose the constraint (2.11).3

We should also impose the constraint

[φA
[µ, φB

ν]] = 0. (2.15)

Since the Fermi field ψµ thus is constrained, we introduce the somewhat simpler field

ψ := Γµψµ (2.16)

with no vector index, for which we find the relations

[ψ, φA
ν ] = Γµ[ψν , φA

µ ] (2.17)

and

Γν [ψ, φA
ν ] = [ψν , φA

ν ]. (2.18)

3. N = (2, 0) supersymmetry

We are now ready to construct the full supersymmetry transformations. We have already

specified the variations of the bosonic fields. We will also need the variation of the field

strength,

δFµν = 2iε̄Γκ[µDν]ψ
κ (3.1)

We now make the most general ansatz compatible with Poincare invariance and dimen-

sional analysis for this fermi field, which is such that it reduces to the known Abelain

transformation if we take the gauge group to be abelian,

δεψ =
(1

2
FµνΓµν + DµφA

ν (Γνµ + aηµν) ΓA +
1

2

[

φA
µ , φB

ν

]

(cΓµνδAB + dηµνΓAB)
)

ε (3.2)

but, noting the constraints, we directly see that we can reduce this ansatz to just

δεψ =

(

1

2
FµνΓµν + DµφA

ν ΓνµΓA +
d

2

[

φA
µ , φB

ν

]

ηµνΓAB

)

ε (3.3)

3It is also easy to see this constraint directly. We compute

[φA
µ , ψν ] =

Z

ds

Z

dtĊµ(s)Ċν(t)[φA(C(s)), ψ(C(t))]

= Cab
c

Z

dsĊµ(s)Ċν(s)φA,a(C(s))ψb(C(s))λc(s) (2.14)

and see that this is manifestly symmetric in (µν).
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We begin with computing the commutor of two supersymmetry variations when acting on

the Fermi loop field ψ, saving the bosonic fields for later;

[δη , δε] ψ = iΓµν (εη̄ − ηε̄) ΓµDνψ

+iΓµν (εη̄ − ηε̄)Dµψν

+iΓµνΓA (εη̄ − ηε̄) ΓADµψν

+iΓνµΓA (εη̄ − ηε̄) Γµ

[

ψ, φA
ν

]

−idΓAB (εη̄ − ηε̄) ΓA
[

ψµ, φB
µ

]

(3.4)

Here we have made use of various constraints. Then using a Fierz rearrangement and

various gamma matrix identities (which we have collected in the appendix), we get

[δη, δε]ψ = −
2i

16
(η̄Γηε)

{

16Dηψ − 8ΓµDµψη + ΓηΓνDνψ − 4ΓηDµψµ

− 8ΓA[ψ, φA,η ] − (4d − 3)ΓAΓηΓν [ψ, φA
ν ]

}

+
2i

16
(η̄ΓηΓCε)

{

ΓC (8ΓµDµψη + ΓηΓνDνψ − 4ΓνDµψµ)

+ ΓCΓA

(

8[ψ, φA,η ] + (3 − 2d)Γη[ψµ, φA
µ ]

)

− 16[ψ, φC,η ]
}

−
i

192
(η̄ΓηωτΓCDε)

{

ΓCDΓηωτ
(

−ΓνDνψ + ΓνΓA[ψ, φA
ν ]

)

+ 4(1 − d)δ
[C
A ΓD]ΓηωτΓν [ψ, φA

ν ]
}

(3.5)

For this to become a representation of the (2, 0)-supersymmetry algebra, [δη , δε] =

−2i (η̄Γνε) ∂ν (modulo a gauge transformation), we must take d = 1 and the Fermi equation

of motion to be

Γν
(

Dνψ + ΓA[φA
ν , ψ]

)

= 0. (3.6)

To proceed with the Bose loop fields we need also the variation of ψµ. It is easy to see that

the following variation

δψµ =

(

1

12
Gµ

τρσΓτρσ + DνφA,µΓνΓA +
d

2

[

φµ,A, φB
ν

]

ΓνΓAB

)

(3.7)

implies the above variation of ψ provided

Gκ
κρσ = Fρσ (3.8)

1

6
εµσκ

τρηGκ
τρη = −Fµσ (3.9)

Since Gκ
τρσ always appears contracted with something which is totally antisymmetric in

τρσ, we may just as well assume that Gκ
τρσ itself is totally antisymmetric in τρσ. Given

all this, we find that

[δη , δε]Aµ = 2iε̄ΓσηFσµ − iε̄Γση

(

1

6
εµσκ

τρηGκ
τρη + Fµσ

)

(3.10)

and

[δη , δε]φ
A
µ = 2iε̄ΓσηDσφA

µ − 4idε̄ΓσΓBη[φA
µ , φB

σ ] (3.11)
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That is, all the supersymmetry variations close on-shell (modulo a gauge variation).

The abelian self-duality equation on the gauge field in space-time implies the Maxwell

equation of motion. In loop space we may take the point of view that Gκ
τρσ is just some

auxiliary field that has to be related to Fµν in certain ways (as specified above). The

equations of motion do not follow from these relations. To get these we must make a

supersymmetry variation of the Fermi equations of motion. We then find the Bianchi

identity

D[µFνρ] = 0 (3.12)

and the Bose equations of motion

DµFµν + [φµ
A,Dνφ

A
µ ] + fermions = 0

DµDµφA
ν −

1

2
[φB,ν , [φB

µ , φA,µ]] + fermions = 0 (3.13)

To get these equations we have made use of all the constraints. In all equations we have

presented one should notice the resemblance with super Yang-Mills, to which they reduce

upon compactification on a circle.

4. Local fields?

We would of course like to get local fields from the loop fields. In the abelian case we should

get the well-known abelian tensor multiplet. To this end we adopt the representations given

in Eqs (2.1) and (2.2) of the loop fields. We also let

Gκ
τσρ =

∫

dCκHτσρ (4.1)

which obviously is a realization of the constraint (3.8). The constraint (3.9) then amounts

to

Hµνρ(x) = −
1

6
εµνρκτσHκτσ(x), (4.2)

and inserting this representation of the loop fields into the supersymmetry variations it is

easy to see that the supersymmetry variations of the local fields become

δφA = −iε̄ΓAψ

δψ =

(

1

12
HκτρΓ

κτρ + ∂µφAΓνΓA

)

ε

δBµν = −iε̄Γµνψ. (4.3)

Of course we tailored our supersymmetry variations so that we would get these well-known

transformations (see for instance [3]) for abelian gauge group.

Requiring Wilson surface observables to exist in our theory, we get severe restrictions

on the loop fields. We look for a generalization of the abelian loop field

Aµ(C) =

∫

dsBνµ(C(s))Ċν(s) (4.4)

– 6 –
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to the non-abelian case. Notice that with Bµν being antisymmetric, we have the Lorentz

covariant transversality constraint
∫

dsĊµ(s)Aµ(s,C) = 0. (4.5)

This constraint can (and hence should) be taken over to the non-abelian case because it is

gauge covariant4 so it still makes sense to impose this constraint also in the non-abelian

case.5

Then for the Wilson surface to be reparametrization invariant we must also require [1]

[H(s, t),H(s′, t)] = 0 (4.6)

where

H(s, t) := nµ(s)Aµ(s,C) (4.7)

Here nµ(s) is defined (using the induced metric on the Wilson surface) as the unit vector

which is orthogonal to the tangent vector Ċµ(s). We now look for representations of this

loop field Aµ(C) in terms of local fields. The only solution that we have found to these

conditions is

Aµ(C) =

∫

dsBa
µν(C(s))Ċν(s)Ta(s) (4.8)

where we let the generators Ta(s) obey the Lie algebra

[Ta(s), Tb(s
′)] = Cab

cχ(s − s′)Tc(s). (4.9)

Here

χ(s) = δs,0 (4.10)

is the function which is 0 everywhere except at s = 0 where it is 1. It is apparent that

condition (4.6) is obeyed. For condition (4.5) to be obeyed Bµν must be taken to be

antisymmeric. However, the local theory described by this two-form will be abelian because

[Ta, Tb] = 0 (4.11)

where

Ta :=

∫

dsTa(s). (4.12)

One may also be tempted to try with

Aµ(C) =

∫

dsAa
µ(C(s))λa(s) (4.13)

4δ
R

dsAµ(s, C)Ċµ(s) =
R

ds
“

Ċµ(s) δ
δCµ(s)

Λ(C) + [Ċµ(s)Aµ(s, C), Λ(C)]
”

≡ 0
5It should also be consistent with SUSY: ĊµδAµ = −iε̄ΓκµψκĊµ. Thus we find the non-abelian con-

straint ψ[µĊν] = 0, which obvious holds in the abelian case with the loop fields represented as in eq. (2.2).
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However there is no way we could satisfy condition (4.5) with this ansatz.

Using the formalism of 2-groups to represent the loop fields in terms of a local two-

form and one-form gauge connection has also led to an abelian theory [5]. In conclusion,

the issue of finding the appropriate representation for these loop fields seems to be rather

tricky. The worst of scenarious would be if it turned out to be impossible to represent

them in terms of local fields, unless of course one is interested in just the abelian theory.

A. Spinor conventions

We use the same conventions as [3], that is, we use eleven-dimensional gamma matrices ΓM

and make the split ΓM = (Γµ,ΓA) corresponding to the split SO(1, 10) → SO(1, 5)×SO(5).

We define

Γ := Γ012345. (A.1)

The (anti-)commutation relations between all these gamma matrices are

{Γµ,Γν} = 2ηµν

{Γµ,ΓA} = 0

{ΓA,ΓB} = 2δAB

{Γµ,Γ} = 0

[ΓA,Γ] = 0 (A.2)

We impose the following SO(1, 10)-invariant Majorana condition on the spinors,

ψ̄ = ψT C. (A.3)

Here ψ̄ := ψ†Γ0 and the eleven-dimensional charge conjugation matrix C has the properties

CT = −C

C†C = 1 (A.4)

. Letting V denote the linear space of such Majorana spinors, we then define the SO(1, 5)×

SO(5)-invariant chiral subspaces

V± := {ψ ∈ V : P±ψ = ψ}.

where

P± :=
1

2
(1 ± Γ) (A.5)

As a consequence of (A.2), Γµ : V± → V∓ and ΓA : V± → V±.

The gamma matrices have the properties

(

ΓM
)T

= −CΓMC−1

(

ΓM1···Mp
)T

= (−1)
p(p+1)

2 CΓM1···MpC−1

ΓT = −CΓC−1 (A.6)
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and

ΓΓµνρ =
1

6
εµνρκτσΓκτσ

If ε, η ∈ V then we get

η̄ΓM1 · · ·ΓMpε = (−1)pε̄ΓMp · · ·ΓM1η (A.7)

We will let SUSY parameters be ε−, η−, . . . ∈ V−. The spinor ψ+ which is in the

corresponding tensor multiplet will be of opposite chirality to that of the SUSY parameter,

thus ψ+ ∈ V+.

We have that

η̄−Γµ1 · · ·Γµkε− = 0 if k is even

η̄−Γµ1 · · ·Γµkψ+ = 0 if k is odd

To see this we note that Γε = ε ⇔ ε̄Γ = −ε.

In eleven dimensions a complete set of matrices is

{

1,ΓM , . . . ,ΓM1M2M3M4M5
}

(A.8)

because Γ012···10 = 1. The number of independent matrices is 210 which is the number of

components in a squarical matrix acing on the 25-dimensional Dirac spinor representation.

In six dimension we take as the complete set the matrices

{

Γµ1···µkΓA1···Al
}

(A.9)

in such a way that

∑

k,l

(

6
k

) (

5
l

)

= 210. (A.10)

A particularly nice choice6 is to let k = 0, . . . , 6 and l = 0, 1, 2.

Using the completeness and normalization properties7 of these matrices we may obtain

the Fierz rearrangement

εη̄ − ηε̄ =
1

16

(

−(η̄Γηε)Γ
η + (η̄ΓηΓAε)ΓηΓA

)

(1 + Γ) −
1

192
(η̄ΓµνρΓABε)ΓµνρΓAB (A.11)

Here are some gamma matrix identities we have made use of,

ΓµνΓηΓµ = 8ηνη − 3ΓηΓν

ΓµνΓη = ΓηΓµν − 4ηη[µΓν]

ΓνµΓηωτΓµ = ΓηωτΓν

ΓABΓCDΓA = −4δ
[C
B ΓD]

ΓAΓCDΓA = ΓCD (A.12)

6We notice that
`

5
0

´

+
`

5
1

´

+
`

5
2

´

= 24 and that 26.24 = 210.
7Completeness of a set of matrices ΓA means that any matrix M may be expanded as M =

P

CAΓA

and a normalization property tr(ΓAΓB) = δB
A enable us to determine the coefficients CA = tr(MΓA).
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